LOWAIN Project LOW Arithmetic INtensity specific architectures

[PF	Flop/s]					
200	HPCG Peak LINPAC	K Eff.				
	Computer [PFlop/s] [PFlop/s] [PFlop/s]	[%]				
	Summit 200.8 143.5 2.93	1.5				
	Blue = Peak Sierra 125.7 94.6 1.80	1.4				
	Green = LINPACK Sunway TL 125.4 93.0 0.48	0.4				
100	Blue = HPCG Tianhe-2A 100.7 61.4 0.58	0.6				
100	Trinity 41.5 20.2 0.55	1.3				
	ABCI 32.6 19.9 0.51	1.6				
	Cori 27.9 14.0 0.36	1.3				
	Piz Daint 27.2 21.2 0.50	1.8				
	Titan 27.1 17.6 0.32	1.2				
	SuperMUC 26.9 19.5 0.21	0.8				
	and and and and the set of a set and a set					
Peak, LINPACK, and HPCG performance of the Top10 supercomputers (November 2018) - a graph and a table						

Running HPCG is computationally inefficient

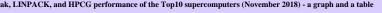
LOWAIN assumptions and goals

LOWAIN assumptions:

• a simulation specific architecture is economically justified

• most simulation programs behave in a way similar to HPCG

cale-equivalent" computer


Summit-like exas	scale	"Exascale-equivalent"			
Perform. estim. [F	PFlop/s]:	Perform. estim. [F	Perform. estim. [PFlop/s]:		
DP peak	1000	DP peak	30-50		
SP peak	2000	SP peak	60-100		
DP HPCG	~15	DP HPCG	~15		
Simulations (DP)	~15-30	Simulations (DP)	~15-30		
Simulations (SP)	~50-60	Simulations (SP)	~50-60		

F/B of Matrix-Vector Product

 $A_0 = M_{00}^* a_0 + M_{01}^* a_1 + M_{02}^* a_2 + M_{03}^* a_3$ $A_1 = M_{10}^* a_0 + M_{11}^* a_1 + M_{12}^* a_2 + M_{13}^* a_3$ $A_2 = M_{20}^* a_0 + M_{21}^* a_1 + M_{22}^* a_2 + M_{23}^* a_3$ $A_3 = M_{30}^* a_0 + M_{31}^* a_1 + M_{32}^* a_2 + M_{33}^* a_3$ Each matrix element used only once (all accesses result in cache misses) Only two operations (MPY and ADD) done with any **non-zero** matrix element. (vector loads not considered)

Flop/Byte of Matrix-Vector Product 2 operations/8 byte number < 0.25

DP HPCG Flop/Byte ratio is similar

Poor HPCG behavior is caused by low Flop/Byte ratio

	Memory	Enough Data	Peak	Bound to
Processor	Bandwidth	for DP HPCG	Performance	Efficiency
	[GB/s]	[GFlop/s]	[GFlop/s]	[%]
NVIDIA Volta-100	900	0.25*900=225	7800	2.88
Volta-100/NVLink	300	0.25*300=75	7800	0.96
Intel Xeon Phi "KNL"	480+120	0.25*600=150	3000	5.00
KNL (using external DRAM)	120	0.25*120= 30	3000	1.00

The processor-memory bandwidth performance limit and the peak performance

The first LOWAIN phase

The processor peak performance can not be fully used

The LOWAIN program suggests

reducing the computing power and/or the number of cores of processors. The first LOWAIN research goal is to determine how much

by measuring Flop/Byte ratio of simulation programs.

Exploiting	Flop/Byte ratio

		Theoret.	Measured	% of use of the
Computer	Processor	efficiency	efficiency	memory bandwidth
		bound [%]	[%]	bound [%]
SX-ACE	Fujitsu SX-ACE	25	11	44
Κ	Fujitsu SPARC VIIIfx	12	6	50
Cori	Intel Xeon Phi "KNL"	5.0	1.5	30
Summit	NVIDIA Volta-100	2.9	1.5	52

The percentage of the use of the memory bandwidth when running the HPCG The second LOWAIN phase

The real processor simulation performance is substantially worse than the memory bandwidth upper bound. The LOWAIN project suggests using an intelligent memory controller

to make full use of the memory bandwidth upper bound.

We	ather	Resea	rch &	Fore	cast
Flop/Byte	Grid size	×347x123	•173x123	•87x61	đ
1.8		Volta-10		Volta-100	
1.6		single co	ire cache	all cores cache	2
1.4					11
1.2					<u> </u>
1.0				/	¥
0.8					
0.6		EXP = 15 MPY			11
0.4		Flop/Byte ratio of SP F	IPCG		
		EXP = 1 MPY			
0.2					
L i		16 64 size in SP numbe	256 1024 ers	4096 16348	65536
Flop/Byt	e of Microp	hysics Driver	of Weather	Research &	Forecast

as a function of the cache size (Single Precision configuration) A LOWAIN 1st phase result; input "Central Europe, June 6, 2013" resented at General Assembly of European Geosci. Union, April 20

Intelligent memory controller Very wide and fast memory bus **Reduced Number and/or Power of Processor Cores** Necessary to use efficiently the limited memory bandwidth. The standard pre-fetching and to guarantee very high Just as many cores as the memory bandwidth would keep busy cache-miss procedures are too weak to take full use of simulation specific features memory bandwidth It is not the goal of LOWAIN Main Program Backbone Off-processor controller running the load/store backbone Simpler and and/or more space Optionally using less to prepare a HW design DO I=1,X <-B(1) of the main program to deliver a data stream to/from for caches advanced CMOS process cheaper processors A(2*I) = B(I)A(2)-> the processor optimally and just-in-time. of a high-bandwidth memory bus, Very limited communication with the program cores. C(I+1) = D(I)+2 <-D(1)but to suggest measures to use **ENDDO** C(2)-> The present LOWAIN research shows that, <-B(2) in simulation programs, the backbone can run well ahead a given bus optimally. Using 28 nm CMOS proces mastered in Europe Higher Lower leaof the main program most of the time, and hence it has A(3)-> to make a fully European processor power kage, etc. <-D(2) enough time to prepare the data flow for the processor

Pursued Approach and Methodology

Features of the Exascale-Equivalent Architecture

1st Phase

Using standard profiling tools to measure execution times, the number of executed operations and the number of loads/stores across the processor-memory interface can be measured to determine the flop/byte ratio of studied programs. However, the number of loads/stores across the processor-memory interface depends on the cache sizes that are fixed when profiling at a given computer. Therefore, an emulator of a plain or optimized code with variable cache size is being developed for exact measuring of the flop/byte ratio dependence on the cache size

2nd Phase

- Study of patterns of processor-memory data traffic that are specific for computer simulations listed above and use them to design memory handling algorithms.
- Extend the emulator, developed in the first phase, to study the behavior and properties of different intelligent memory computers implementing the algorithms of the previous paragraph.
- Insert a low level model of the RISC-V architecture to the emulator to verify details of the LOWAIN processor design

50	1.4	
18	0.4	LOWAIN goal: "Exasc
58	0.6	
55	1.3	Summit-like exascale
51	1.6	Perform. estim. [PFlop/s]:

ale	"Exascale-equivalent"			
lop/s]:	Perform. estim. [I	PFlop/s]:		
1000	DP peak	30-50		
2000	SP peak	60-100		
~15	DP HPCG	~15		
-15-30	Simulations (DP)	~15-30		
-50-60	Simulations (SP)	~50-60		

The LOWAIN Project Roadmap

Czech Technical University, Faculty of Information Technologies (Coordinator) Czech Technical University, Faculty of Mechanical Engineering Charles University, Department of Atmospheric Physics Charles University, Department of Applied Mathematics Skoda Auto, a.s. Mecas ESI (suggested) Codasip, s.r.o. (2nd phase)

Ludek Kucera LOWAIN Project Czech Technical University & Charles University Prague, Czech Republic ludek@kam.mff.cuni.cz